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Abstract. Habitat degradation is the slow — and often subtle — deterio-
ration in habitat quality that accompanies human activities through
increases in road density, pesticide use, hunting pressure, etc. Such
degradation is of particular concern in fragmented habitats where
economic or jurisdictional boundaries rather than ecological ones
determine the level of exploitation adjoining habitat patches endure.
To examine the consequences habitat degradation might have on
species interactions, we posited a patch of pristine habitat surrounded
by “matrix” habitat whose degradation level was variable. Using
a coupled pair of diffusive Lotka—Volterra competition equations with
Robin (mixed) boundary conditions, we modeled the dynamics of two
competing species inhabiting the pristine patch and incorporated
matrix degradation through a tunable “hostility” parameter represent-
ing species’ mortality rates in the matrix. We found that the numerical
range of competition coefficients over which one species is the competi-
tive dominant and the other inferior may grow or shrink as matrix
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Fig. 1.1. Over time, intensification of human imprints on “matrix” habitat adjoining
nature reserves (through such activities as road construction and pollution) can resuit
in a progressive degradation of matrix quality. For species that unknowingly stray into
matrix habitat from nature reserves, such decreased habitat quality often takes an
ecological toll in the form of elevated mortality rates due to increased exposure to road
traffic, toxic chemicals, or other species

intensify in the matrix habitat, they gradually reduce the quality of that
region, making it more and more hostile to species in the remnants
Fig. 1.1.

For example, species diversity of birds inhabiting remnant wood-
lots in Ontario, Canada, declined as the extent of housing development
outside the forest fragments increased (Friesen et al. 1995). Because
only one group of birds (neotropical migrants) appeared sensitive to
the habitat changes, dramatic shifts in community composition were
evident along the development gradient. Friesen et al. cite increased
mortality from domesticated pets and other sources in the matrix
habitat as one potential mechanism for the changes. Similarly, Angel-
stam (1986) suggests that Swedish forest birds suffered increased mor-
tality from generalist predators (e.g., corvids, foxes) residing in matrix
habitat as human activities make the habitat patch and its surround-
ings more and more dissimilar. In many ecological systems, progressive
deterioration of the matrix habitat may be accompanied by a predict-
able pattern of species extinctions in remnant patches (e.g. Bierregaard
et al. 1992). Species’ interactions and life-history traits (e.g., rates of
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patches from historically dominant habitat types — is of particular T
concera becausef it often _le_ads to precipitous declines in the. abL}ndance Fig. 1.1. Over time, intensification of human imprints on “matrix” habitat adjoining
of resident species. Familiar examples of such fragmentation-induced nature reserves (through such activities as road construction and pollu?ion) can re.sult
declines include northern SPOtted owls (Thomas et al. 1990) and the in a progressive degradation of matrix quality. For species Fhat unkn'omngly stray into
“faunal collapse” that may occur in tropical forest fragments following matrix habitat from nature reserves, such decreased habitat quality often takes an
isolation (Karr 1982; Lovejoy et al. 1983). ecological toll in the form of elevated mortality rates due to increased exposure to road
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Typically, the human-modified “matrix” surrounding remnant traffic, toxic chemic P

habitat patches is of lower quality (for certain focal species) than the

remnant patches themselves. This translates into an increased mortal- intensify in the matrix habitat, they gradpally reduc_e tk{e quality of that
ity risk for individuals that venture (or propagules that are dispersed) region, making it more and more hostile to species in the remnants
beyond the boundaries of the remnant patches. Such increased mortal- Fig. 1.1. o »
ity risk in the matrix can threaten species with extinction as individual ' For example, species diversity of birds mhabltmg' remnant wood-
habitat patches are “drained” of their occupants (e.g., Bach 1984; lots in Ontario, Canada, declined as the exte.nt of housing development
Kareiva 1985) and as potential colonizers are killed on the journey outside the forest fragments incrc_:ased (Frlesen et al. 1995). Because
from one isolated patch to another (e.g., Janzen 1986; Thomas et al. only one group of birds (neotroplcal. migrants) gppeared sensitive to
1990). the habitat changes, dramatic shifts in comlpumty comp.os1t‘1on were
Often landscape alterations like fragmentation and patch isolation evident along the development gradient. Friesen et al. cite 1ncrease'd
are portrayed as an all or none event; that is two types of habitat exist: mortality from domesticated pets and other sources in the matrix
(1) isolated patches of pristine habitat (e.g., nature reserves) and (2) the habitat as one potential mechanism for th.e changes. Slfmlarly, Angel-
modified matrix in which the relict patches are embedded. However, stam (1986) suggests that Swedish forest b.ll‘dS suffered }n‘crea'sed mor-
human activities often change ecological landscapes in more subtle tality from generalist predators (e.g., corv1_ds, foxes) remd%ng in matrix
ways, such as the slow degradation of habitat (Doak 1995). In this habitat as human activities make the habitat patch and its surroux.ld—
degradation scenario, human activities do not convert matrix habitat ings more and more dissimilar. In many ecological systems, progressive
from its natural condition to condominiums in one step, but instead deterioration of the matrix habitat may be accompanied by'a predict-
impact matrix habitat quality in a much more protracted fashion. As able pattern of species extinctions in remnant patches (e.g. Bierregaard

housing and highway construction, pollution, and similar activities et al. 1992). Species’ interactions and life-history traits (e.g., rates of
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reproduction and dispersal) are thought to critically determine extinc-
tion likelihoods in such cases.

Here we explore, at a theoretical level, the effects that the process of
habitat degradation has on species coexistence. Specifically, we posit
a patch of pristine habitat that is surrounded by matrix habitat.
Populations of two competing species reside and reproduce in the
pristine patch but can disperse (unknowingly) into the surrounding
matrix. We then ask how degrading (or equivalently, increasing the
hostility of) matrix habitat alters the outcome of the species’ competi-
tive interactions. Among other results, our analysis will show how
a competitor that is inferior in the pristine core habitat when the
matrix habitat is of high quality can become dominant over — and
eventually replace — the other species as degradation in the surround-
ing matrix region proceeds. The occurrence of this competitive reversal
is dependent on several factors including the size of the patch of
pristine habitat, the growth and dispersal rates of the competing
species, and the strength of their competitive interactions.

We shall model the dispersal and interactions of the competing species
via a system of reaction — diffusion equations. Such models were intro-
duced by Skellam (1951) and Kierstead and Slobodkin (1953) and have
been widely used to describe spatial effects in population dynamics;
see Holmes et al. (1994). In such models the degree of hostility of the
environment outside a habitat patch is typically described via boundary
conditions, i.e. conditions imposed on the solutions to the system at the
boundary of the patch; see Ludwig et al. (1979). There have been
numerous studies of the effects of habitat size, geometry, and composition
on the interactions of competing species from the viewpoint of reaction —
diffusion models; see for example Pacala and Roughgarden (1982),
Mimura (1984), Mimura and Fife (1986), Mimura et al. (1991), and
Cantrell and Cosner (1993), among many others. For additional references
see Holmes et al. (1994). What is new in the present article is a careful
analysis of how the boundary conditions (which reflect the hostility of
the external environment) affect the outcome of competitive interactions.

2 Mathematical modelling and interpretation

The purpose of this section is two fold. First, we describe a mathemat-
ical framework that addresses how the coexistence of two competing
species in a continuous habitat patch is affected by increasing the
hostility of the exterior of the patch. Second, we summarize con-
clusions regarding competitive dominance and reversals of dominance
that our subsequent analysis will support.
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Providing a mathematical framework consists not only of intro-
ducing our two-species competition model but also of establishing the
context for our analyses. To this end, we first discuss corresponding
single species models and mathematical formulations of the related
concepts of coexistence and invasibility.

2.1 Single species models

The single species models which we employ in this article are of the
logistic form

%Lti = Dy V?u + "<7(x) - %)u m ex6 OC.)) ey
Ou 2.2
oca_;1+5u=0 on 0 x (0, c0), @2

where Q is a bounded open connected set in one, two or three spatial
dimensions representing a habitat for the species whose population
density at locale xeQ and time t =0 is given by u = u(x,t). The
parameters D;,, ¥ and K occurring in (2.1) are standard ones, represent-
ing the diffusion rate for the species within €, the intrinsic growth rate
for the species and its carrying capacity, respectively. The quantity y(x)
does not exceed 1; it represents the possibility of spatial dependence in
efficacy of reproductive growth. Here this heterogeneity is in response
to spatial variation in competitive pressure with y(x) decreasing as -the
population density of the competitor and the intensity of competition
at the locale x increases. Indeed, it is conceivable that y(x) is negative
for some locales.

" The parameters o and f§ in the boundary condition (2.2) are non-
negative with o + 8 > 0. The term % is Vu-#, where #(x) is a unit
outward normal along the boundary 0Q of Q. Condition (2.2) allows
us to vary the hostility of the environment surrounding the habitat
patch. (We will refer to this external environment as the habitat
“matrix”.) To see that such is the case, recall its derivation in the now
classic paper of Ludwig, Aronson and Weinberger (Ludwig et al. 1979)
on the spruce budworm. In this paper, Q is a one dimensional habit at
(i.e. a bounded open interval) surrounded by an infinite “sea” of hostile
territory. Exterior to €, the population density u is subject to the

growth law

8u_

% DouVu — su (2.3)
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where D,,, is the diffusion rate of the species outside Q and s > 0 is
its death rate outside Q. Matching densities and fluxes for an equilib-
rium to (2.1) and the unique bounded equilibrium for (2.3) leads to (2.2)
with

o«=D;, and f=./sD,,. (2.4
Consequently, (2.2) is equivalent to
D;

==Vu-n +/su=0

out

\/BVu-n +./su=0

when Diy= Dy, = D. As a result, the parameter § in (2.2) may be
1nterpreted as an indicator of how hostile the matrix is to the species
in question. The extremal case f =0 corresponds to a completely

closed patch (i.e. one with a reflecting boundary). Since (2.2) can be
written as

on 0Q or

o
ZVy. =0
ﬁVu n+u

for >0 and §—>0 if « >0 is fixed and f — oo, the extremal case
B = oo corresponds to an immediately lethal exterior.

Single species models of the form (2.1)}-(2.2) are widely used and
broadly accepted in the modelling of a population inhabiting a con-
tinuous habitat patch, dating back to the seminal papers of (Skellam
1951) and (Kierstead and Slobodkin 1953). The dynamics of such
models are by now very well understood (see Cantrell and Cosner
1989). Namely, any positive initial population density profile which
then propagates subject to (2.1)<(2.2) tends over time to an equilibrium
solution of (2.1)+(2.2). The associated eigenvalue problem

D;,V2p +ry(x)p =6 in Q
2.5)
aVo-n+ =0 on dQ

will have a principal eigenvalue, characterized by the admission of
a positive eigenfunction. The principal eigenvalue represents the fastest
possible growth rate for the linear growth model corresponding to
(2.1)+(2.2). If the principal eigenvalue ¢ for (2.5) is negative or zero, the
only nonnegative equilibrium solution to (2.1)~(2.2) is identically zero,
meaning that the species is extinct. On the other hand, when ¢ > 0,
(2.1)+2.2) admits a unique equilibrium solution that is positive in @,
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and moreover, all positive initial population density profiles then
propagate to the positive equilibrium over time, a rather strong sense
of the species persisting. (The idea that solutions starting near an
unstable equilibrium of a reaction-diffusion equation are bounded
below by solutions which increase monotonically toward another
equilibrium was introduced by Aronson and Weinberger (1975) and
given a more general and detailed formulation by Matano (1978,
1979).)

2.2 Competition models

We shall consider the diffusive Lotka—Volterra competition model

—= ‘|1l —=——=U, |U
i D1V U1 41 1[1 K1 K1 2 1
(2.6)
ou, 2 | BU:i U U
—éz— = D2V Uz + 72[1 K2 Kz 2
in Q x (0, o0), subject to
oVU;-n + pU; =0 2.7

on 99 x (0, o). Here Q is once again a bounded open connected set in
one, two or three space dimensions and U; = U(x,t) represents the
population density of the ith species at locale xe Q and tirr.le. t> 0. D,
r;, K;, o, and B are as in Sect. 2.1, while B; scales the competitive impact
of U, on U; and B, scales the competitive impact of U; on U,. As we
will elaborate on shortly, we assume the competitors’ mortality rates in
the matrix can vary independently but in proportion to the overall
level of matrix hostility.

In ecology, equations of this form are a traditional way of repres-
enting spatially-distributed populations of competing species. Ecol-
ogists regularly estimate these equations’ variables — or, at least, closely
associated quantities — from field data. For example, diffusion coeffi-
cients can be estimated from local scale experimental data (Kareiva
1983; Cain 1990; Fagan 1997) or from landscape scale spread rates
(Andow et al. 1990; Okubo 1980). Intraspecific and interspeciﬁ? com-
petition rates, although often difficult to acquire, are also estimable
from ecological data (e.g. Gause 1934).

In order to analyze how increasing f influences coexistence in
(2.6)-(2.7), 1t is mathematlcally advantageous to rescale U, and U,. We
letu, = K(f and u, = ;{22 A simple calculation shows that (2.6)+2.7) is
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then equivalent to

aul
at = D V u; + [a1 — Uy — bluz]ul
2.8
L (2.8)
Tk D3yVZuy + [a; — byouy — uzlu,
in Q2 x(0, c0),
oV + Bu; =0 2.9)
in 0Q x (0, c0).

Here D;, a; and f are as in Sect. 2.1, a; = r;, and b, and b, are
normalizations of the original competition parameters B; and B,.

Specifically,
riK > K
b, = B.[ 12 — Faliy
1 1(K11'2>’ b, Bz<K2r1 (2.10)

Further, we assume that the two species’ death rates in the habitat
matrix may differ, yet both be proportional to some overarching level
of matrix mortality (e.g., road density, pesticide contamination). This
approach makes biological sense because species may vary widely in
their sensitivity to a complex process such as habitat degradation

(Lovejoy et al. 1989; Bierregaard et al. 1992). From this assumption
and (2.4), (2.9) is equivalent to

0 = (Din)iVu; - 11 + /€:iS(Dogur)its; (2.11)

wher.e c; is the hostility proportionality constant.
Since (2.11) can be written as

(Dia)i
0 prmeed
JeDo st

we take o; = (Din)i/y/i(Dow) and f=./s in (2.9). Thus when we
increase matrix hostility, we are specifically increasing the overall
death rate in the matrix.

By arranging the boundary conditions in this way, we are assuming
that the boundary between the remnant habitat and the surrounding,
degraded area is an “invisible” one that is not detectable by the resident
species. Thus, species neither shun nor are unduly attracted to the
surroundmg area. This assumption is certainly plausible for many
species and situations where factors such as increased hunting pres-
sure, pesticide contamination, or pollution are responsible for the
degradation of the matrix habitat (Janzen 1986; Doak 1995). These
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forms of degradation are much more subtle than processes like defores-
tation that create a visible, physical boundary to which some species
might respond. Buechner (1987) tabulates examples of mortality fac-
tors facing several charismatic vertebrate species that unknowingly
venture from U.S. National Parks into more hostile surrounding areas.

We will show how species’ sensitivity to the hostility of the area
surrounding a remnant habitat patch can lead to a competitive reversal
as the extent of degradation intensifies. This type of result, wherein
a formerly inferior species supplants a formerly dominant one — even
inside the “protected” remnant patch itself — has policy implications for
both nature reserve design and management of human activities out-
side park boundaries. As we describe next, we shall measure the effect
of such increasing matrix hostility on coexistence in (2.8)~(2.9) through
the normalized competition parameters b; and b, of (2.10).

2.3 Coexistence and invasibility

We shall say that the model (2.8)~2.9) predicts coexistence of the
species represented by u; and u, provided there are functions V; and
V, on @ with V;(x) > 0in €, i = 1, 2, so that any solution to (2.8)-2.9)
with

u;(x,00 >0 inQ (2.12)
i=1, 2, satisfies
u,-(x, t) g Vi(X) in Q (213)

i=1,2,fort =ty =toty(x,0),us(x,0)). The functions ¥, and V', can
be considered asymptotic floors for the population densities in
(2.8)~2.9). Whenever V; and V, exist, they, of course, depend on the
parameters D;, a;, b, o; and f in (2.8)~2.9). However, for any fixed
selection of parameters such that ¥; and V, exist, the time it takes
a solution to exceed and remain above the asymptotic floor depends
only upon the initial population density profile. It is clear that if
(2.8)(2.9) admits a single globally attracting componentwise positive
equilibrium, then the model predicts coexistence as we have defined it.
However, our notion of coexistence allows for more complicated
dynamics; for instance, multiple componentwise positive equilibria are
possible. If the system admits stable equilibria of the form (u;,0) or
(0,u,), then clearly our notion of coexistence cannot obtain. Conse-
quently, in this context, stable equilibria of the form (u;,0) or (0, u,) are
of interest only as a possibility to be ruled out.

Coexistence must imply the persistence of each species in the
absence of the other, harking back to the discussion in Sect. 2.1. As
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noted there, in order for the model

5u,~
¥ DiV?u; + uy(a; —u;) in Qx(0, o) (2.14)

o;Vu;+n + Pu; =0 on dQ x (0, o), (2.15)
to predict persistence, we require that the relations
DV*¢; + aip; = 0:¢p; in Q
Vi + ;=0 on oQ
¢:;>0 inQ

imply 6; > 0. A straightforward calculation shows that

- v (A%,

If we now let A4/ denote the unique A for which

_V=lp inQ
Vo +Bp =0 ondQ

gc_lglits a positive eigenfunction, then Af/* is nonnegative and
" = A%, Consequently, o; > 0 is equivalent to & > ABl% so that
either is a necessary precondition for coexistence in (2.8)—(2.9). Biolo-
gically, the inequality 5 > A4/# indicates that persistence of a species in
the absence of its competitor is possible only when the ratio of its
reproductive and dispersal rates exceeds a certain critical value, which
is related to the size and shape of the habitat patch and varies as
degr.adation proceeds in the matrix surrounding the habitat patch. In
particular, we shall show that 14/* decreases with increasing .

Given that each species can persist in the absence of the other, what
conditions are necessary for invasion by the other species? To this end,
suppose now that 7> A8 i =12 Then, as in Sect. 2.1, we have
a unique globally attracting positive solution, denoted u¥, to
(2.14)2.15). Suppose we were to have an initial profile
(u1(x,0), u5(x, 0) for (2.8)~(2.9) with u,(x, 0) near 0 and u,(x,0) near
uf(x). Suppose also that ¢ > 0 in

D\V?*¢ + (ay — bju3(x))p = o in Q
(2.16)
o Vp-n+ =0 ondQ
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implies that o < 0. Let (u;, u,) be the solution to (2.8)+(2.9) correspond-
ing to (u,(x,0),u,(x,0)). Then
3u1

i D V2u; + uy(ay — byuf (%)) — ug(b1[up — uf(x)] + uy)

< D,V?u; +uy(a; — byuf(x) +¢) (2.17)

for t > 0so long as |by (u; — u¥) + uy| remains less than &. (The smaller
g, the closer 1, (x, 0) is to 0 and u,(x, 0) is to u3(x).) Suppose ¢ < |a|. It is
easy to calculate that w(x, ) = e *9'¢(x) satisfies , -

ow

rri D1V*w + w(a; — byuf(x) + & inQx (0, c0),

(2.18)
o, Vw-5 + pw =0 on Q2 x(0, o).

If K > 0 is such that
u;(x,0) = Koé(x)

then a well-known comparison principle (see e.g. Cosner and Lazer
1984 or Cantrell et al. 1993b) implies that

uy(x, t) £ Ke*9p(x) (2.19)

for t >0 so long as |by(us — uf) + uy| <e. Since o + ¢ <0, (2.19)
implies that u,(x,t) decays exponentially if (u;(x,0),u,(x,0)) is suffi-
ciently near (0,u%(x)). In such a case, (2.8)—2.9) predicts that species
2 excludes species 1 if the initial densities are near (0, uf(x)).

In the preceding, species 1 could not increase in density if introduc-
ed into the habitat at a low density with the u, density near its carrying
capacity. In other words, ¢ < 0 in (2.16) means that species 2 is not
invasible at carrying capacity by species 1. Indeed, in such a case, the
density of species 1 decays exponentially toward extinction and
(2.8)-(2.9) does not predict coexistence as we have defined it. Conse-
quently, if we are to expect (2.8)2.9) to predict coexistence, it seems
reasonable to hypothesize (in addition to the persistence of each species
in the absence of the other) that species i is invasible at carrying
capacity by species j, i, j = 1, 2, i # j. Mathematically, we must then
require (in addition to 7 > A4/®, i = 1, 2) that o; > 0 when the eigen-
value problem

DV*¢ + (a; — buf(x)p =0:¢p inQ
wVo-n+p-¢=0 ondQ

admits a positive solution, i = 1,2, i = j. It then follows from Corol-
lary 3.7 of Cantrell et al. (1993a) that (2.8)-(2.9) predicts coexistence.

(2.20)
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The results of Cantrell et al. (1993a) may consequently be regarded as
giving mathe.matical precision to the ecological dictum “invasibility
implies coexistence”. This notion of invasibility is described and
studied numerically in Pacala and Roughgarden (1982).

Now consider (2.20). If b; = 0, ¢ > 0 is equivalent to f > A4/ the
requirement 'that each species persist in the absence of thé other., (Of
course, .sgch is certainly to be expected, since b; = 0 corresponds to no
competitive impact of species j on species i.) Suppose now that b; < b’
a.nd that i, o; and ¢, ¢’ are the corresponding eigenvaluesl andl
elgegfunctlons in (2.20). In this case 6; > o). To see that such is the case
multiply the equation ,

DiV2$ + (a; — buf (x))p = oip
by ¢’ and the equation
' D¢’ + (a; — buF(x))¢’ = i’
by ¢, integrate and substract. We obtain

Dif [#86 — 6291 — i~ 1y [Lutoo =0~ [ 00

Green’s Second Identity implies

D, Ltqsv.\.«,b — A =D, f (Vb1 — GV’ 1]

oL (2o 2)
=0.

Conselquently, .(bg — b)foutdd’ = (o, — oo ¢, and so if b; < b, then
0; > 0;. Thus increasing b; lowers g; in (2.20). Moreover, it can be
shown that o; is a smooth function of b; with lim, _, ,0; = T 0. (We
shall address this point in our next section.) The implication is that

there is a critical value b; so that
;>0 if0<b,<b
g; = O if bi = b—l
o < 0 if bi > B.l
Con§eq}1§ntly, species j at its carrying capacity uf is invasible by
(sipem.e's i,i%j,50 ) long as b; < b;, while species j excludes species i at low
ensities if b; > b;. From the preceding discussion, it seems reasonable

to regard b;as a measure of the threshold capacity of species i to persist
in the face of competition from species J> j # i. Note that u} depends on
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D, a; o; and B, but not on b;. It follows that b; depends on all
parameters in (2.8)-(2.9) except bj, j + i. Suppose D;, a;, and o; are fixed
for i = 1, 2. Then b, (B) > b,(B) indicates that species 1 can withstand
more intense competition from species 2 than vice versa.

What we shall explore in the body of this paper is how changes in
B affect the relative positions of b, (B) and b, (pB) under various assump-
tions on the remaining parameters. In this way, we will examine how
increasing the hostility of the matrix influences competition between
the two species within the habitat patch, Q.

2.4 Interpretation

In this last subsection, we briefly illustrate some of the conclusions
regarding interspecific competition that can be extracted from our
analysis of the relative values of the two species’ “competition
thresholds”, b;and b,, as functions of § on [0, co]. We shall address this
issue in greater detail at the end of this article.

Consider Figs. 2.1(a) and (b), which illustrate two contrasting scen-
arios for the relative values of b, (f) and b, (B). Our subsequent analysis

b,0)

b0)

!
B B
Fig. 2.1a. In this graph f3 represents the degree of hostility of the matrix surrounding
a habitat patch and b(f) represents the maximum level of competition that species
i can sustain from species j and still be predicted to persist for any positive initial
density. This particular scenario shows a reversal of competitive advantage as B in-
creases. The graph is a schematic representation of the simplest possible case of
reversal of competitive advantage. We cannot rule out the possibility of multiple
crossings of the two curves which would indicate multiple reversals
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b (0)
5o)
byp) _
b()
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Fig. 2.1b. Again, ff represents the degree of hostility of the matrix surrounding a habi-
tat pgtch and b(p) represents the maximum level of competition that species i can
susfaln from species j and still be predicted to persist for any positive initial density.
This scenario shows no reversal of competitive advantage as f§ increases, and in fact
shows the advantage of species 1 to be increasing with

demonstrates that both scenarios in essence occur for appropriate (and
different) choices of the remaining parameters.

. These two scenarios reflect how tremendously complex the rela-
tionships between the two species’ competition thresholds and the
se-verity of matrix hostility can be. In the scenario illustrated by
Fig. 2.1(a), suppose that b; and b, lie in the interval (max{b,(0),
b1(0)}, by(B). Then for B small, by < b (8) while b, > b,(f); hence,
species l.can invade species 2 at carrying capacity, while species 2 at
low densities is excluded by species 1 at carrying capacity. In other
words, if the hostility of the region surrounding the habitat patch is
low, species 1 has a clear competitive advantage. For moderate values
of B, by < by(B) and b, < b,(B), so that each species can invade the
other at carrying capacity and we have coexistence of the two species.
But then for large values of j (i.e. the matrix is a very hostile environ-
ment), by > by(f) and b, < b,(p); consequently, the competitive ad-
vantage shifts to species 2. Contrast the preceding possibility with the
scenario illustrated in Fig. 2.1(b). Then if species 1 can invade species
2 a.t'carrying capacity when there is little matrix hostility, it retains that
ablhty as 8 increases, whereas if species 2 cannot invade species 1 at
carrying capacity for small f, it never gains the ability to do so as
B increases. Consequently, in the scenario illustrated by Fig. 2.1(b), if
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species 2 does not hold a competitive advantage in a closed habitat,
it cannot gain an advantage as the hostility of the habitat matrix
increases.

Because modifications to matrix habitat may have far reaching
effects on remnant patches such as changing critical ecological pro-
cesses like decay rates for carrion and dung (Klein 1989) or success
rates for plant pollination and seed set (Aizen and Feinsinger 1994), it is
important to understand the possible mechanisms through which
external modifications can impinge on the functioning of ecological
communities (e.g., Janzen 1983; Cantrell and Cosner 1993). Our ana-
lyses illustrate one plausible mechanism through which the conse-
quences of human-generated landscape heterogeneity extend far beyond
simple reductions in species abundance. Namely, we show how the
slow degradation of matrix habitat adjoining a protected nature re-
serve can reverse the outcome of two species’ competitive interactions
inside the reserve: a competitive dominant becomes inferior and vice
versa. At the community level, such degradation-induced competitive
reversals could ultimately change the ecological structure and com-
position of a supposedly secure reserve.

3 Mathematical preliminaries

In the preceding section, we showed a way to formulate mathemat-
ically how competition between two species in a habitat patch may be
affected by increasing the hostility of the surrounding matrix to the
species in question. Specifically, we plan to study how the critical
parameters b;, i = 1,2, vary with increases in the matrix hostility
parameter f. The definition of b; = b;(B) and b, = b,(f) in Sect. 2.3
implies that they are the unique positive numbers for which the
boundary value problems

D.\V*¢, + (a; — bjui(x))p; =0 in Q
3.1)
o, Vo, + fp; =0 on dQ

and

D,V2¢, + (az — bauf(x))p, =0 in Q
(3.2)

o,V -1 + B, =0 on 9Q

admit solutions ¢, and ¢,, respectively, which are positive on the
habitat patch Q. (Here 5. > A£/® and u¥(x) is the corresponding positive
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single species equilibrium, as in the preceding section.) Observe that
(3.1) and (3.2) can be expressed as

b. a _
~ V2, +B?u§(x)¢1 =~D—11 1 inQ
(3.3)
a;Véi-n+ P, =0 on dQ
and
b. a ,
= Vi + 5ut(9g = ig in 0
34
Ve + P, =0 on 0Q G4
respectively.

The results and conclusions in the remainder of this paper depend
upon a detailed understanding of (3.3) and (3.4). More specifically,
they depend upon a thorough quantitative and qualitative analysis
of how uf, b; and ¢; in (3.3) and (3.4) vary with increasing f. How-
ever, only a portion of the mathematical analysis, per se, is directly
used in drawing biologically interpretable conclusions. The rest of
the analysis consists of the derivation of properties (e.g. monotonicity)
and estimates needed to support the main arguments. A separation
between the two parts of the mathematical analysis serves to high-
light our biologically interpretable conclusions and allow a reader
with biological interests to focus his or her attention there. To this
end, we devote this section to stating, as simply as possible and in
context, the background results that we will use in the analysis of
the next three sections, and defer the proofs of said results to the
Appendix. Our hope is that by so doing, our main results will be
p(;cf}:l 1essentially mathematically self-contained and biologically mean-
ingful.

Our first observation is the following:

Theorem 3.1. Suppose B, €0, oo] and that o> Mol for i =1,2. Let
(b1:lf§>¢1) be as in (3.3) and (ba, uf, d,) be as in (3.4) with [op? =1
Jor i=1, 2. Then the maps from [0, co]— [0, 00)x C}(Q) x C!(Q)

given by B — (b1, uf(B), 61 (B) and B — (bs, uf(B), $2(B)) are differenti-
able at f3,.

. It is worthwhile to note that Theorem 3.1 is significant in two ways.
First of all, it includes the important fact that {(8, b;(8)):B [0, o)} is
a smooth curve with the property that limg., ,b;(8) = b;( ), i = 1,2.
Second, it justifies the calculations we make of bi(0) in Sect. 5 to
examine the effect of the onset of exterior hostility.
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Now return to (3.3) and (3.4). Observe that both boundary value
problems are of the form

— V¥ +qy =AY inQ
Vy-n+yp =0 onodQ

withg = —b,iu}‘ in (3.3) and -ﬁiu’{‘ in(3.4), A =5in(3.3) and 3 in (3.4), and
Y= ;ﬂ; in (3.3) and a% in (3.4). Let A1(q) denote the so-called principal
eigenvalue for (3.5); i.e., the unique value of A for which (3.5) admits an
eigenfunction which is positive in Q. Notice that 4}(0) is the same
quantity as the previously employed 1}. Basic to our subsequent results
is our next observation. '

Theorem 3.2. The principal eigenvalue A1(q) of (3.5) satisfies:
(i) If q, and q, are continuous functions on Q, y = 0 and q; = g, then

A(q1) £ A(q2)- If 91 # g2, then 21(q1) < A1(q2)-
(i) If0 <y, <7y, and qis a continous function on Q, then 21'(q) < A¥(q).

(3.5)

It is a well-known fact that the principal eigenvalue for the Laplace
operator subject to homogeneous Neumann boundary data (i.e. reflect-
ing boundary conditions) is 0. In our notation, this fact is expressed as
29(0) = 0. It follows from (ii) that A}(0) increases strictly as matrix
hostility y increases and that A7 (0), the principal eigenvalue in the case
of absorbing or Dirichlet boundary data, is the largest such quantity.
Notice that this ordering should be intuitive in light of the observation
in the preceding section that species with density u; persists in the
absence of competition (with exterior hostility level y) when 5, the ratio
of intrinsic growth rate to diffusion rate, exceeds A}(0) and in light of
the expectation that survival should be the least likely with a com-
pletely lethal exterior.

Our results in Sect. 6 demonstrating or prohibiting a shift in
competitive balance depend upon an analysis of the quantities
2B (Bhu) and Afle (32u¥), an analysis which is facilitated by the
following additional information concerning uf and uf. Let y be
nonnegative and let a > A1(0). As in Sect. 2, there is then a unique
positive solution to the boundary value problem

—~Vu=ula—u) inQ
(3.6)
Vu-n+yu=0 on 0Q.

Let us denote this solution by 6%. Then 6} is defined for y 20 apd
a > A}(0) and we have:

Theorem 3.3. (i) 0}, is an increasing function of a and a decreasing
function of y.




508 R. 8. Cantrell et al.

(11) 0} < a for any y = 0 and a > 1}(0).

(%11) A1(8}) = a for any y = 0 and a > A3(0).
. (11v)2 uf*(B) = D,08l%s, for any B = 0 and a;, D; such that 4. > A=(0),
i=1,2. l

As a consequence of Thegrgm 3.3(iv), the quantities crucial to our
analysis in Sect. 6 are A{™(b,5205/%.) and ,1’1”“2(52%; 0%/% ). Hence we
require estimates on quantities of the form A} (ef??), where e is a con-
stant and (ef}?) plays the role of g. We have:

The(?rem 3.4. Suppose that 0 <y, < v,.
(i) Let e >0 and a > A1(0). Then if e < 1,

ae + AP(0)(1 — e) < AP(ebr) < A3(0) + ae 3.7
while if e > 1

a < Ap(ef) < Ap(0) + ae. (3.8)
(i) Let e > 0 and a > A3(0). Then ife < 1,
AV (0) < AL (ef?) < a (3.9
while if e > 1,
A1 (e0}) < ae + (1 — e)A3(0). (3.10)

4 Some exceptional cases

{}n additional consequence of Theorem 3.1 is that if - > AP (0) and
p, > AT (0), then by (B) and b,(B) are necessarily boundea functions of
B [0, co]. Biologically, this fact can be interpreted as indicating that if
bqth species can persist in the absence of the other in a habitat patch
with a highly lethal exterior, then changes in exterior hostility could at
most yield a limited increase in the overall level of competition com-
patible with coexistence.

. However, it is not difficult to see that if, for instance

7. < AP(0) < 3, such is no longer the case. Indeed, since A9(0) = 0 andj
A4/%2(0) increases strictly in B, there must be a unique value of € (0, oo)

say fo, for which 42> A9=(0) for Be[0,fo), % = (), and
; < A§/*(0) for B > B,. Consequently, species 2 goes extinct at the level
of extelfior hostililty corresponding to B, quite independent of any
corr%p.etl‘tive effect from species 1. So, as f increases toward S, the
faqulhbnum density u$(f) tends toward zero and species 1 persists even
}f the competitive impact species 2 on it (as measured by b,) becomes
1n.deﬁnitely large. On the other hand, species 2 becomes extinct even
with no competition from species 1. See Fig. 4.1.
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b

b(0)

b(0)

B, B

Fig. 4.1. As in Fig. 2.1, f§ represents the degree of hostility of the matrix surrounding
a habitat patch and b(f) represents the maximum level of competition that species
i can sustain from species j and still be predicted to persist for any positive initial
density. This graph depicts a scenario where species 2 cannot persist when f is too
large, even in the absence of species 1. As f§ becomes so large that species 2 cannot ever
persist, the amount of competition that species 1 can sustain from species 2 approaches
infinity. This is the only scenario we studied where the total level of competition which
could be sustained seemed to increase with §; however, the reason why species 1 can
sustain strong competition from species 2 is that species 2 is tending toward extinction
for reasons independent of the interaction between species

As we shall see in Sect. 5, the introduction of matrix hostility
usually impacts species’ competitive rankings rather than increasing
the intensity of competition they can withstand. Matrix hostility can in
fact influence competitive rankings even when the two species have the
same growth rates, diffusion rates, and competitive impacts and are
thus “competitively balanced” in a closed habitat. If these well-match-
ed species exhibit different responses to matrix hostility, then, under
some circumstances, the introduction of matrix hostility may initiate
a disruption of their competitive balance. However, in one exceptional
case, the introduction of exterior hostility into the system may actually
have no impact at all on the competitive balance. To see this possibili-
ty, let us assume perfectly matched species having a; = a,, D, = D,

and o, =oa,. Theorem 3.3@v) tells us that uf(f)= Dﬁg{‘,’,‘)l =
ch’)gﬁ‘i)z = u¥(f). Consequently, %{u%(ﬁ) = bﬁff‘ﬁ;x ahd
By (B) = b,0%"%,. Since A=(9473) = 5. by Theorem 3.3(iii), it follows

from (3.3) and (3.4) that b, (8) = 1 and b,(B) = 1. So, in this admittedly
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highly special case, the introduction of exterior hostility has no impact
on species’ competitive rankings nor on the intensity of competition
compatible with coexistence.

5 The effect of introducing exterior hostility

Closed habitats correspond to reflecting (i.c. homogeneous Neumann)
boundary data. In this case, the unique positive solution to the bound-
ary value problem (3.6) used in defining u¥(0) is the constant a.
Theorem 3.3(iv) then implies that u#(0) = a; and u%(0) = a,. Biolo-
gically, this fact can be interpreted as saying that in the absence of
boundary dissipation, the population of each species spreads itself
uniformly throughout the habitat patch. With u%(0) =a, and
u$(0) = a,, the critical equations (3.3) and (3.4) also have the property
that positive eigenfunctions are necessarily constant. A cursory exam-
ination of (3.3) and (3.4) shows that b; = b,;(0) and b, = b,(0) must
satisfy b,p* = 5+ and b,5- = 5 which of course yields

i~ a 7 as
b, (0) = . b,(0) = 2 (5.1)
So long as a; % a,, we have b, (0) # b,(0) and, as noted in Sect. 2,
one of the species has a clear competitive advantage if the competition
rates by, b, lie in the interval between b, (0) and b,(0). For instance, if
a; > a; and 2 < by, b, <32, species 1 can invade the habitat patch
when species 2 is at carrying capacity while if species 2 is introduced in
small numbers with species 1 at carrying capacity, species 2 will die out.
We can measure the effect of introducing exterior hostility effects
via the derivatives b7 (0) and b,(0). For instance, in the situation just
described, if b’ (0) > 0 and b%(0) < 0 the range of values for competition
coefficients for which species 1 holds a competitive advantage over
species 2 expands for small values of B, while if b’ (0) < 0 and 55 (0) > 0,
it contracts. We shall see that unless b;(0) =0 = b (0), we have
b1(0)-55(0) < 0, so that one of the preceding alternatives obtains.
More precisely, we have the following result.

Theorem 5.1. Let b;(B) be as defined in Sect. 2.3. Then

- ajoy [151:%) D1D2 |6Q[
By (0) = (1% _ _
O < D, D, )(a%ala) I G2

and

i~ 25105 a0y D1D2 IaQ{
2(0) = — . .
20 <D2 D, ><a§oc1a2) 12| (3)
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Consequently, unless 5~ — 32 =0, b,(0) and b5(0) we have
opposite signs.

Proof. We shall derive (5.2) only, as the derivation of (5.3) is analogous.
To calculate b} (0), we consider (3.3) with ¢, satisfying [o¢? = 1 and
(3.6) with a = 3¢ and y = ;. Employing Theorem 3.1, we differentiate
each with respect to B, and let ' = §. So doing, we obtain

TSN TR TUA by by in O

R e T
(5.4)

o;Voyin+ podi + ¢ =0 on dQ
and
a 20\, .
— V3l = (—l—)—?‘; - —5;2>u2 in Q

(5.5)

o, Vit -+ Pty + 1, =0 on 0Q

Next, multiply (5.4) by ¢; and (3.3) by ¢}, integrate both and
substract. The net result is

L((b'led)l — ¢V ¢)dx = — L(EE -;%qﬁf +b, —g—i—ﬁ) dx. (5.6)

Apply Green’s Second Identity to the left hand side of (5.6) and

simplify the resulting equation to show that b)(f) is given by the
formula

— 2§00 03(B) S — by (B) [0 (B $3(B) dx )
ot (P02 (B) dx

We know that ii,(0) = a, and b,(0) = 3. Moreover, since ¢;(0) is
constant and [, ¢3(0)dx =1, ¢,(0) = ﬁ, where |Q| denotes the-vol-
ume (or area) of Q. Consequently, we may obtain a formula for b’ (0)
in terms of the coefficients D;, a;, and o; provided we can do so for
{15 (0)dx. . i

We now go back to (5.5) for the purpose of calculating jg i5(0) dx.
Since i1, (0) = a,, (5.5) simplifies to

5’1(ﬁ)=

—W@@=~%@@iﬂ2
2

(5.8)
o, Vit,(0)-y = —a, on 0L
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Hence by (5.8) and Greeen’s Second Identity,

Q az Jao

=& —azds

as joo X2
D

= —2219Q|.
Oz

Consequently, when f = 0, (5.7) becomes
_Dijo2|  a (_ D, @)

~ oy |2 a o, |Q
bll (0) — 1 I ! 2 2 I l
az
. 1a2a2 -+ a1D2a1 B_Q
- azoq o, Q
a1X; Gyl DD, )iaﬂi
. 59
( ><a%tx1a2 [Q2] 2)

Reiterating, unless % — 32 =0, b (0) and b,(0) have opposite
signs. Thus the onset of matrix hostlhty usually increases the “competi-
tion threshold” of one species and reduces that of the other, and so has
the tendency to exaggerate or diminish the competitive advantage for
one of the species described previously. Notice that the magnitude of
the effect of introducing matrix hostility depends explicitly on the
perimeter to area (or surface area to volume) ratio |9Q|/|2|. We explore
in the next section the possibility of a “reversal of fortune” due to
increasing matrix hostility.

6 A “reversal of fortune” or not

Our aim in this section is to demonstrate that both the tendencies at
the onset of exterior hostility observed in the preceding section may
extend over the entire range of the exterior hostility parameter f.
Recall that if b, (B) > b, (B) for some B, then species 1 enjoys a competi-
tive advantage over species 2 so long as the competition parameters by,
b, lie in the interval (b, (B), b, (B)). The competitive advantage switches
if b,(B) > b (B) and by, b, lie in (b, (B), b, (B)). We will first give condi-
tions on a;, D; and «; under which we can demonstrate that
b1(0) > b,(0) and b, (B) > b1 (0) and b, (B) < b,(0) for all f > 0. Under

="
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such conditions, (b,(0), b1 (0)) < (b, (B), b1 (B)) for all B > 0 and the com-
petitive advantage held by species 1 in a closed habitat is enhanced by
increasing the exterior hostility parameter from 0 to . We then posit
conditions on a;, D; and «; under which we can show that b, (0) > b,(0)
but by(B) < b,(0) and b,(B) > b,(0) for all B >0. In this case, if
b, (B) < by (B), (b2(B),b1(B)) < (b,(0), b;(0)) and the range of values for
competition coefficients under which species 1 holds a competitive
advantage is diminished by increasing the exterior hostility parameter
from 0 to B. If by(B) > b;(B), the competitive advantage actually
switches to species 2. We show that such a switch can occur, depénding
on the principal eigenvalue AP (0). This last finding demonstrates that
the size and geometry of the habitat patch are significant factors in any
“reversal of fortune” due to increasing exterior hostility. We shall
return to this point at the end of the section.

As our chief aim is to demonstrate that increasing extenor hostility
can lead either to the exaggeration of the competitive advantage that
exists in a closed habitat or to its reversal, we have not attempted at
this point an analysis of all possible configurations of the parameters
a;, D; and o, i = 1,2. Rather we have isolated two sets of conditions
which serve our main purpose. Our first result is as follows.

Theorem 6.1. Suppose that

'D—l > D_2 ?(O), Dl > Dz, oy > 0y (6.1)

Then for any B > 0, by (B) and b,(B) satisfy

~ a; — D124/(0) a;
1) a; — D,24(0) a > 1

v

a a; — Dz/llilaz(o)
>—=> =
a a4 "Dl’llll/ 0)

2 by (B). (6.2)

In particular, the numerical range of values for competition coefficient
by, b, for which species 1 holds a competitive advantage expands from

(az a;

7,7 in the case of a closed habitat to at least

a, — D,29™(0) a; — D A§/=(0)
a; — D AY™(0) a, — D, 24/ (0)

when the exterior hostility parameter takes the value > Q.

Proof. Notice that 3+ > 72 and D; > D, imply that 3 > 3¢ > 1. Since
b;(0) = 2 and b,(0) = 2, species 1 holds the competitive advantage in
a closed habitat (i.e. when f = 0).
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We now examine by (f) and b,(f) for B> 0. Let us first consider
b, (B). We have from (3.3) and Theorem 3.3(iv) that b, = b, (p) satisfies

Aqm([)'lg% 9££7§2> =4 (6.3)

D,

Observe that (6.1) implies that bl 7, > 1. Suppose to the contrary
that le < 1. Then

i D (4 -3
big. b, = Oajps
so that Theorem 3.2(i) implies that

lﬁ/al<b1 Zgﬂ/ax >< lﬂ/ax(gg/al >

But now Theorem 3.3(iii) implies

as
lﬂ/a, gﬂ/flx — .
1 ax/Dy D2

Dz 2z A”’“*(bl efjﬁ;‘;,z).

Because o; > o, by (6. 1), ,,, ;;. So Theorem 3.3(i) implies that

Hence

EID—Z 08l > b1 05{7;,1 on Q.
1
Consequently, Theorem 3.2(j) imphes
D ~D
lﬁ/ax<b1 2 ghlay ) > Ag/ax(b =2 9517&) = %II
by (6.3). We are now led to the conclusion that 5 B, > D,, a contradiction

to (6.1). So le,>1
We may now employ the estimates of Theorem 3.4(ii) with
B B

D, '
= — = =h, =2>1 d
71 o Y2 % e 1D1 an a== S

az

By (3.16), we have

— 1Bl oz | < %2( 7 Da _ 5. D2) 5,
D1 = A <b1 0, ,D> D2<b1D1> + (1 b1D1>/11 0). (6.9)
From (6.4), we obtain that

a; — D, A{*(0)

51 (ﬁ) g a, — Dzlqlax(o)-

(6.5)
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Now consider b, (f). By (3.4) and Theorem 3.3(iv),

A‘{’“z(ﬁzgl 9{,’{7,5,) I(Z 6.6)
where b, = b,(p). If
52% =1, bz ~ 0215, 2 021,
Because
£- < f— Bll%. > 0% on Q.

Consequently, (6.6) and Theorem 3.2(i) imply that
— 1Blaz 1 nBla;
Dz = M <b2D2 9‘,1,,)1>
= A’f’“z(@f{?ﬁ)
> zz;m{eg{g,).

Because A/’/“Z(Of/ﬁ, ) = D, by Theorem 3.3(iii), we obtain 5 > 3, contra-
dicting (6.1). Hence byp: p. < L.
We now apply the estimates of Theorem 3.4(i) with

_ D a
= Blos, Y2 = Bla,, e == bzi and a= D—ll

From (3.7), we have

b,D D a
Blaz 21 < 1 nBlay _ 2
<D ><b2 > 2‘ (0)< ‘l)2 ) = 2’ <b2D2 00)/1)1) Dz - (6‘7)

It follows from (6.7) that

— a,; — Dzlglﬂz(O)
<.z L~ L
2= Dm0

So if (6.3) holds, we have from (6.4) and (6.8) that

a; — D,24/%(0)
a; — DA%y

(6.8)

b, (B) <

while
ay, — D 2§(0)

= opy s 81— Dii™(0)
b )2 a; — DA™ 0y
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The function
a, — sz
a; —D;x

f) =

has derivative

o BE=B@D) (@
7o) =B=B02D o (0.22)

By (6.1), f'(x) < 0. Since Theorem 3.2(ii) guarantees that A4/%(0) in-
creases in f, the quantity

az — Dzlﬁ”“z(o) . Blaz
a, — Dllglaz(O) _f(j‘l (O))

decreases as f§ increases. Similarly,

a; — D A{™ (0)
a; — D,2§*(0)

increases as f increases and the proof is complete. |

We now consider a different configuration of the parameters a;, D;
and oy, i = 1,2, under which a competitive reversal is sometimes pos-
sible. We have the following result.

Theorem 6.2. Suppose that

a a; o
B; > D_l > 2.1 (O), a; > aj. (69)
Then
by(o0) <™ D PO b, (o) ;ﬁ?—“—DM (6.10)

a; — D,A7(0) a; — D1 AP(0)
If 12(0) > =%, then for sufficiently large 8 > 0, b;(B) < b, (B). In this
case, the competitive advantage held by species 1 when the competition
coefficients by, b, lie in (zZ,7}) switches to a competitive advantage for
species 2 for competition coefficients by, b, in (b,(B), b, (B)). If

2 2 _ _ _
r0> St (o) (22)< 6050

a;Dy —a,D, a1’az

and the range of values for competition coefficients for which species
2 holds a competitive advantage when the matrix hostility is high
subsumes the range of values for competition coefficients for which
species 1 holds a competitive advantage in a closed habitat.
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Remark. Again, it is the case that

— a; a —
= — —=b O’
b1(0) = 3t > 22 = 5,(0)

1

and species 1 holds a competitive advantage when the competition
a; ay

coeflicients by, b, lie in the interval (Z,z). If b1(©) < by( o), then
extreme exterior hostility switches the competitive advantage to
species 2. More specifically, when b; ( 00) < b,( o0), b;(8) < b, (p) for all
large B by Theorem 3.1, so that species 2 is at an advantage when the
competition coefficients by, b, lie in the interval (by (8), b, (B)).

Proof. Let us first consider b,(0). We have from (3.3) and Theorem
3.3(iv) that b, = b( c0) satisfies
~ D a .
,1;°<b1 -5?1— 0:;3,1,2) = -511-. (6.11)

Ifh, 5t = 1,1 92020, = 02)p, and (6.11) and Theorem 3.2(i) imply that

a ol ¥ P2 pew
f)il = /11 <b1 D_j 9a2/D2>
Z AT (023p,)-

Since A2(02p,) = 1= by Theorem 3.3(iii), we obtain a contradiction to

(6.9). Hence b; 32 < 1.
We now employ the estimates of Theorem 3.4(i) with

71 = 00, Y2 = 0O, e=b1-5f and a:_—_B;'

From (3.7), we have

a; - D2 as{ - Dz — D2
= ]® 2 g > = b, ==} 4 A® —b; == 6.12
D, Af (bl D, 002/1)2) 2 D2<b1D1> AT (0)(1 by D1> (6.12)

It follows from (6.12) that

= a; — D,A7(0)
by (o0) é————--az ~D.20) (6.13)

Now consider b,( o). Again, from (3.4) and Theorem 3.3(iv), we
have

- D a
li“(bzl—)-i- :?,D,> = -1—)32 (6.14)
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where bz == bz(@) If b2 Dl =< 1 B_ZD ‘f/DI é 6::/1)1 and (614) and
Theorem 3.2(i) imply

az

D,
(bz 9a,/n.> = AP(02p,)-
D,

Again, Theorem 3. 3(iii) implies that AP(02)p,) = 7 and we contradict

(6.9). Consequently, +> 1. .
We may now apply once more the estimates of Theorem 3.4(i1), this

time with
—~ D
71-_“00: 'Yz=00, ezbz‘ﬁ‘}‘ and a4 = —,.

We have from (3.10) that

@y _ o7 Dige \ (7 D1 _5 zwo 6.15
DZ—- 1<b2D2 a,/D1>=D1<b2D2) (1 2y, (0). ( )

It follows from (6.15) that

a; — D347 (0)
a; — DA (0)
So 1f (6 9) holds, (6.13) and (6 16) give (6.10). By (6. 9)bthe function
f (x) = 2= D < is increasing on (0,5t) and its reciprocal 5=p'5 is decreas-
ing. At a minimum, we are guaranteed that extreme exterior hostility

reduces the numerical range of values for competition coefficients b,
b, under which species 1 enjoys a competitive advantage. When

a; — DAP(0) a, — D,A7°(0)
— el <
a, — D,A7(0) a; — D{A7(0)

by(o0) 2 (6.16)

there is a switch in competitive advantage to species 2. It is easy to
calculate that such a switch takes place for f large when

—a,
6.17
0> 55 (617)
If the value of A{°(0) is large enough, we will have
(“2 “‘) (G1(B) 52(B) (6.18)
ay a,

so that the range of values for competition coefficients by, b, for which
species 2 enjoys a competitive advantage when matrix hostility is high
((b1(B), b, (/3))) actually subsumes the range of values for b,, b, for which
species 1 enjoys a competitive advantage in a closed habititat G It
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is not difficult to see that (6.18) holds once 1{°(0) is large enough to
have

a; — D{A7(0)
a; — D,AT(0)

This requires
—a3
a1D1 — a2D2

£(0) > (6.19)
Remark. We may interpret (6.17) and (6.19) as saying that the ge-
ometry of the habitat Q is such that very little of its interior is
effectively buffered from the hostility of exterior. It is important to
recognize that both the size and the shape of the habitat factor into the
value A7°(0).

Examples. We shall now illustrate Theorems 6.1 and 6.2 with examples
based on parameter values that might be plausible for small mammals;
see Okubo et al. (1989). We shall assume that the parameters in (2.6)
are

ry=15yr, B; =10, K, =60 individuals/km?

(6.20)
r, =10yr, B, =10, K, =40 individuals/km?
so that under the rescaling (2.10) we have
ay = 15, b1 = 10, a, = 10, bz = 1.0, (621)

For these parameter values species 1 would exclude species 2 in a
closed homogeneous environment, since b;(0)=15>1=b; =
b, > 2/3 = b,(0). What happens as the exterior hostility increases
and/or there is greater dispersal across the boundary depends on the
diffusion coefficients. We first consider the hypotheses (6.1) and (6.9) of
Theorems 6.1 and 6.2 respectively. For (6.1) to hold for ay,a, as in
(6.21) requires 1 < D/D, < 1.5; for (6.9) to hold requires D{/D, > 1.5.
Thus, the scenario corresponding to the coefficients in (6.21) shifts from
that described by Theorem 6.1 to that described by Theorem 6.2 when
D; =1.5D,.
To illustrate Theorem 6.1, suppose that

D, = 1.0km?/yr, D, =0.75km?/yr. (6.22)

Hypothesis (6.1) is satisfied under (6.21) and (6.22), provided oy > oy«
For simplicity, let us assume that species 2 is four times as susceptible
to mortality in the hostile exterior as species 1 and that the diffusion
rates of both species are the same inside and outside of the patch. In
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that case we have ¢, = 4c, in (2.11) so that oy = 20, = 5. Under these
hypotheses Theorem 6.1 will hold provided a,/D, > A (0), ie.
4/3 > AP(0). To examine what this last requirement means, note that
for a square with area A we have AF (0) = 2n*/A. Thus, if 4 is the area
in km? of a square patch, Theorem 6.1 will hold if 4 > 37%/2 ~ 14 km?.
(This is the smallest square that could support species 2 in the case of
a boundary that is immediately lethal, i.e. as f — c0.) More generally,
for a rectangle whose area is 4 and whose sides have ratio S,

®(0) = n? (\/g + 1/\/§)/A. Thus, if the rectangle is four times as long
as it is wide we would need 4 > 277?/8 ~ 33km?. (The requirement
that a,/D, > AP(0) is needed to insure that species 2 can persist in the
absence of species 1 as § — c0.) Under the above assumptions Theorem
6.1 implies that by > 1.5>1=b; =b, =1> 0.67 > b, for all values
of B. Thus, species 1 can always invade a patch inhabited by species 2,
but species 2 can never invade a patch inhabited by species 1. Suppose
that A4 is chosen so that AP(0) = 1; if the patch is a square this would
require A = 27* ~ 20. Then by Theorem 6.1 we would have b;( c0) = 2
and b,( ) £ 0.5.

To illustrate Theorem 6.2 we need only change D,. Suppose that

D; =10km?yr and D, = 025km?/yr. (6.23)

In this case Theorem 6.2 holds provided that a,/D; = 1.5 > A7 (0).
In the case of a square patch that will be true if 4 = 47%/3 =~ 13 km?.
Under these hypotheses we have by(0)=15>1=b;=b,=
1> 2/3 = b,(0). However, if we take A so that A¥(0)=1 (for a
square this means A4 ~ 20), we have b;(0) <2/3<1=b; =b, =
1 < 3/2 < b,( o). Thus in this case, species 1 excludes species 2 when
B =0 but as § — oo species 2 can invade a patch inhabited by species
1 and species 1 cannot invade a patch inhabited by species 2, so the
balance of competition has shifted.

In cases where AT (0) is too large to satisfy (6.1) or (6.9), one or both
populations will be unable to persist alone as f — co. This would lead
to the type of situation illustrated in Fig. 4.1 if a;/D; > a,/D,, and to
the same thing with the roles of the two species reversed if
az/Dy > ay/Dy. _ _

Since the outcome of competition depends not just on b, and b, but
on how b; and b, are related to b, and b,, there are various other
possible scenarios which might occur. For example, if b; and b, are
sufficiently small and the patch is sufficiently large the two species will
coexist for all values of f. Our results on the behavior of b; and
b, could be used to analyze many of the possible scenarios, but we shall
not attempt to do that here.
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7 Summary and conclusions

This work formalizes one mechanism through which habitat disrup-
tion can fundamentally alter the nature of species interactions. Specifi-
cally, we have shown here how habitat degradation outside of a nature
preserve might have devastating impacts on competitive relationships
of species inside the preserve. We modeled the dynamics of two
competing species using a coupled pair of diffusive Lotka—Volterra
competition equations applicable to one, two or three dimensional
reserves. Including Robin (mixed) boundary conditions in our PDE
system allowed us to study the impacts of matrix degradation through
a tunable “hostility” parameter that reflected species mortality rates in
the matrix. We formulated a measure of the threshold capacity of each
species to persist in the face of competition from the other species and
found that these competitive thresholds varied with increasing matrix
hostility. Consequently, the numerical range of competition coeffi-
cients over which one species is competitive dominant and the other
inferior grew or shrank as matrix quality deteriorated. Perhaps the
most startling result is that degradation of the exterior habitat was
often sufficient to bring about a competitive reversal inside the pre-
serve. Whether or not the competitive reversal occurred depended on
the intensity of the two species’ competitive interactions, their rates of
reproduction and dispersal inside the preserve, and the geometry of the
preserve itself. )

Our analyses here were motivated by the fact that ecologists are
increasingly concerned about the preservation of species interactions
(as well as species’ abundances) in habitats disturbed by human activ-
ities (e.g., Janzen 1983, 1986; Klein 1989; Aizen and Feinsinger 1994).
From a management standpoint, our work suggests just how difficult it
may be to maintain the basic nature of species interactions when
degraded matrix habitat is an important part of the landscape. It is
worth noting at this point that the concepts and methodology outlined
here in the context of two species diffusive Lotka—Volterra competition
can in principle be extended not only to competitive interactions other
than Lotka—Volterra but also to other types of species interactions
such as predation or even sometimes mutualism. In the case of a dif-
fusive Lotka—Volterra predator—prey system, preliminary investigation
indicates a rather complex response of the long term dynamics of the
system to increased degradation of matrix habitat.

One potential solution is to devise reserves large enough to reduce
residents’ contacts with the hostile matrix habitat. The tradeoff, of
course, is that a single large reserve may preclude protection of differ-
ent species elsewhere. Alternatively, some researchers have suggested
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“buffer zones” (regions surrounding nature preserves designed to lessen
the influences of human impacts) as one possible solution. However,
buffer zones themselves may generate similar disruptive effects on
species interaction if reserve inhabitants exhibit differential abilities to
utilize the surounding habitat for reproduction or feeding (Janzen
1983; Cantrell and Cosner 1993).

Here, we have focused on scenarios in which human activitites alter
habitat “quality” by increasing mortality risk. However, human—
caused habitat disruption can impact sets of interacting species
through a diversity of mechanisms. For instance, in many ecosystems,
some species are less willing than others to cross particular habitat
boundaries. Among other attributes, these differential boundary re-
sponses can depend on species’ habitat usage (e.g., arboreal vs. terres-
trial mammals (Laurence 1991)), species evolutionary milieu (native vs.
exotic pollinators (Aizen and Feinsinger 1994)), or even something as
subtle as temporally varying predation risk (rodent foraging at edges
linked to moon phases (Bowers and Dooley 1993). In such cases,
non-dispersing species (and species intimately linked to non-dispersing
species through pollination predation, etc.) could be at a distinct
disadvantage in ecosystems where patch edges are abundant. These
kinds of asymmetries in species responses to habitat changes set the
stage for disrupting whole suites of biological interactions, many of
which may have coevolved (Lovejoy et al. 1983; Bierregaard et al.
1992). Consequently, the impacts of human modifications to natural
habitats are likely to be quite complex and extend much further than
“simple” changes in the abundance of a particular favored species.

Because habitat destruction, fragmentation, and degradation are
continuing at an unprecedented rate, there is a pressing need for
research relating such complicated spatial processes to the dynamics of
interacting species. In this regard, theory addressing the roles of habi-
tat boundaries and patchiness to species interactions can help formal-
ize verbal arguments and outline new areas for field workers. In many
of these situations, approaches similar to the “patch-and-boundary”
model presented here could be instructive as we strive to understand
how human habitat modifications alter species interactions.

Appendix A
Proof of Theorem 3.1

The operator — DV?u + ¢(x)u in Q, where c(x) > 0, enjoys the same
properties when it is supplemented by Robin boundary data,
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Vu-n+ pu on 0Q, f =0, as it does when it is supplemented by
Dirichlet boundary data. Several properties are pertinent to the pres-
ent discussion. First of all, boundary value problems of the form

—DVu+c(x)u =f(x) in Q Vu-n+ fu=¢(x) on dQ (A.l)

are uniquely solvable with ueC**(Q) provided feC*(Q) and
e CH*(0Q) (Gilbarg and Trudinger 1977). Second, if ¢(x) =0 and
S (%) = 0,thenu > 0in Q; i.e,, the operator admits a maximum principle
(Protter and Weinberger 1967). As a consequence, the eigenvalue
problem ‘

— DV?*w + c(x)w =ow in Q
(A2)
Vw.n+ pw=0 ondQ

has a principal eigenvalue; i.e., there is a unique o (which is in fact
positive) for which (A.2) admits a positive solution (Hess 1991). More-
over, this eigenvalue can be realized variationally as in (Courant and
Hilbert 1953).

We first establish that the maps f—uf(f) and B — uf(f) are
differentiable on [0,00). We consider uf(f). Define a map &:
C**(Q) x [0, c0) = C*(Q) x C1*(Q) by

D(u, B) = (D, V?u + (a; — u)u,a;Vu-n + Pu). (A.3)

Then
[-(% d(u, ﬁ):|w = (D;V?*w + (a; — 2u)w, o, Vw-5 + Bw). (A.4)

Suppose now for some f = 0 that u = uf(f), as defined in (2.14)—(2.15).
Then ®(u, f) = 0. Moreover, the definition of u¥ (B) forces the principal
eigenvalue in

—D\V*w + uf(B) —a)w=Aiw in Q
oo;Vw-y + fw =0 on 0Q

to be 0. Consequently, because u¥(f) > 0 in Q, the principal eigen-
value in

— D V*w + Qu¥(B) —a)w=Aw inQ
o ;Vwn + pfw=0 on 0Q

is positive. It follows that [Z ®(u%(B), f)] is a linear homeomorphism
and the differentiability of uf(f) follows from the implicit function
theorem. A precisely analogous argument gives the result for u%(p).
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Now consider the linear problem

DV¢ +[a; —buf(f)] =0 in Q
(A.5)
o;Vo-n+ Pp=0 on 98

Define a map y: C>*(@) x [0, ) x [0, 00) — C*(Q) x R x C*(9Q) by
Y(¢,b,B) = (D1V2¢ + (a1 — buz (B))¢, chz ~1,0,Vg-n + ﬁd)) (A.6)

Then

b4
{M(d)’ b? ﬁ)](pa C)

= (Dlep + (a; — buz(B)p — cu3(B)p,2 Lcﬁp,ale -n+ ﬂp> (A7)

Let  (¢,b,8)=(¢1(b).b:(f), ). Then ¥(¢,b,)=0. If now

[—"ﬂfg,‘b_) tﬁ(qﬁ, b’ .B)](p’ C) = 0, then

D\V?p + (ay — by (B)p — cuf(B)p = 0 (A.8)
J ¢p =0 (A.9)
o;Vp-n+ Bp =0. (A.10)

Because D V¢ + [a; — byuf(f)]¢ = 0in Q witho; V- + f¢ =0 on

90 and ¢>0 in Q, (A8) and (A.10) are solvable only if

[alcus (B)p)¢p = 0. Since u3(f) > 0in Q and ¢ >0 in Q, ¢ = 0. In that

case, (A.8) and (A.10) imply that p = k¢ where k is a constant. But then

(A.9) implies that kfo¢? = 0, hence k = 0. So Lol (¢, b, B)] is injective.
Now consider

D,Vp + [ay — buf(B)]p + cus (B)p =1 (A11)
j b =g (A.12)
oVp-n+Bp=nh (A.13)

where fe C*(Q), geR, and he C1*(dQ). The Fredholm alternative im-
plies that (A.11) and (A.13) will have a solution p provided f — cuf(B)¢
is orthogonal to ¢ in L?(Q). Consequently, (A.11) and (A.13) may be
solved if

Lﬁp ~ [ ur o (A.14)
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From (A.14), we require

__fafb
Inuik(ﬁ)¢2
If po is a solution of (A.11) and (A.13), so is po + k¢ where k is

a constant. For such a solution to also solve (A.12) we need
fapod + k[adp? =g. As ¢ > 0in Q, we can solve to get

c

=t

Consequently, [3(% (¢,b, B)] is surjective. The implicit function the-
orem guarantees that ¢ (8) and b, (B) are differentiable in  on.[0, co).

To extend the result to the case f = oo, i.e., the Dirichlet case,
rewrite the boundary condtion as o;yVu-1 + u = 0 where y =} and
argue as before.

Proof of Theorem 3.2

(i) Let ¢; denote a positive eigenfunction for (3.5) corresponding to
A1(q;). Then

— V3, + gy =g, inQ (A.15)

and
— V3, + g, = Al(g2), in Q (A.16)

with Vir;-n + vif; = 0 on 09, i = 1,2. Multiply (A.15) by i/, and (A.16)
by ¥4, integrate over 2 and subtract. We obtain

- szvzwl YV 4 L(ql — il
— H(q) — A (qz)JLwlwz. (A.17)
Green’s Second Identity yields
szvzwl V] = fmwszl-n —YViaem

_ ngz( ) — i — )]

= 0.
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Consequently, (A.17) reduces to

f (@ — @z = (@) — A (g2)] f Ve (A9)

Part (i) follows readily from (A.18).

(ii) Lety; now denote a positive eigenfunction for (3.5) correspond-
ing to A¥(q). Proceeding in a manner analogous to the proof of (i), we
obtain

v —72) nglwz — A0 (g) — 14(@)] Lwlwz. (A.19)

Part (ii) is now immediate from (A.19).

Proofof Theorem 3.3

(i) Let 62 be as in (3.6). Suppose that a’ > a > 1}(0) for some fixed
y =2 0. Then

— V20, = 0,(a — 0,)

g ga(al - 9a)

in Q, with V8,-y + 70, = 0 on 0Q. Consequently, 0, is a strict lower
solution to

—Viu=ud—-u inQ
(A.20)
Vu-n+yu=0 on 0Q.

Because any constant larger than @’ is an upper solution to (A.20), we
have 02 < 62 in Q by the method of upper and lower solutions.

Now consider y >y =0 and assume a > 4}(0). Recall that
A7(0) > A3(0), so that a > 1}(0) as well. Then 6] satisfies

— V20, =0 (a—0) inQ

) ) (A.21)
VO -n+7y80a” =0 on dQ
The boundary condition in (A.21) yields
VOL -1 + 907 = (v — 0%
which is negative. Hence 67 is a strict lower solution to
—Vu=ula—u) inQ
(A.22)

Vu-n+yu=0 on 08.
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Because, once again, any constant larger that a is an upper solution to
(A.22), 07" < 02 in Q by the method of upper and lower solutions.

(i) An application of the maximum principle (Protter and
Weinberger 1967) as in (Cantrell and Cosner 1989, p. 301) readily yields
this result.

(iii)) By (3.6), 0} satisfies

—Vu+0u=au inQ
Vu-n+yu=0 ondQ.

Because 8 > 0, it now follows from (3.5) that a = 13(0}).
(iv) By definition u} = u#(f) is the unique positive equilibrium
solution to (2.14)~(2.15). Consequently,

— DV?%uf = u¥(a; —u¥) in Q

B

Vuf -y +&—u2“ =0 on dQ.

If we divide both sides of the top equation by D? and both sides of the
bottom equation by D;, we have

R AT AV A
V(D)“(D)(Di Di) n 2

It now follows from (3.6) that u¥(f) = ,,,,,3...

Proof of Theorem 3.4

(i) Let us first consider the defining equations for A}(ef}) namely

— V2, + efip, = Al (e, in Q
(A.23)
VY-n+yp.,=0 ondQ

where we normalize i, by the assumption that [y = 1. Fix a value
e; > 0 and let e, = 0 be another value of e. Multiply the first equatlon
in (A.23) for e = e; by ¥.,. Then integrate to obtain

M(elez)fgwe,wm - ngh( —VAL) + e L@zwe,wez. (A.24)
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Green’s Second Identity implies that

Lwez( V) — (= VR, = f Vel = Vi) = (= Ve

= Lgvdfe.wez = Wee,
=0

Consequently, (A.24) becomes

8| oo = [ (— V0o + elLezwe,wez

— 1i(e,6) f Vethe, — ezf B0, + elf 6.,
Q Q 2

Hence we obtain that

[i(e102) — %(ezemfgwelwez — (o1 — ) Lezwelwe, (A.29)

Now set e; = e and e; = 0 in (A.25). Then

[A1(e0) — A4(0)] Lwewo —c Le,,wewo.

Theorem 3.3(ii) guarantees that 6, < a. Consequently,

1660 | Waba < 10| bt + ae [vao

from which it follows that
Aj(e8) < AY(0) + ae. (A.26)

It is important to recognize that the two critical elements in establish-
ing (A.26) are having ¥, and ¥, satisfy the same boundary condition
(so that [so¥. (V. 1) = [s0¥.(Vi., 7)) and knowing that 62 < a.
These elements continue to hold if we consider A{(ef?!) in place of

1(ef}), and as a consequence, so does the analysis leading to (A.26).
Hence we have that

AP (eli) < 23(0) + ae (A.27)

whenever 0 < y; <y, and e > 0, establishing the right inequality in
both (3.7) and (3.8).
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Now return to (A.25). Dividing by (e; — e2)[o¥. Y., yields

Mi(e103) — A1(e200) _ [oOe Y,
€1 — €y jﬂl//exl//ez .
An argument similar to that for Theorem 3.1 shows that ¢, is con-

tinuous in e. Consequently, we may pass to the limit as e, —e; in
(A.28) to obtain

(A.28)

Zo- 001 = | oz > o (429)
dey o »
It follows from Theorem 3.3(iii) that A}(ef?) < a when 0 < e < 1 and

1(e6?) > a when e > 1.
Next notice that we may rewrite (A.23) as

e, = V2, + Al(el). | (A30)
Multiplying (A.30) by , and dividing by e yields

OWE =L TH + B2

Integrating this result, we obtain from (A.29) that
d
A(eON = | 972
de{ l(ega)} J‘Q alpe

_ ‘léfgwevzwe + 24(eBy?

:é A1(e02) + ”t//eV"‘!l/ejI

1| - [ 2
= E | l(ega) -+ daQWeVl//e'ﬂ - J‘lewel ]
—-lmﬂ(eev)— (2 - f Vil (A.31)
V] Uany Cole 7f '

The variational characterization of 1}(0) (Courant and Hilbert 1953)
guarantees that

f VU +y f V2 = 140)
Q oQ
so that (A.31) yields

d H ¥ 1 Y ¥ _1 Y
(0D} — 40D < ——X(O) (A32)
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Proceeding as in (Cantrell and Cosner 1987), we obtain from (A.32)
that

€de {/11)’(69’)} A (6’9’) — 41(0)

e’ e?
or equivalently that
1(e6D)| . 4 |40
de{ e [Zdel e (A4.33)
Now assume that 0 < e < 1. Integrate (A.33) from e to 1 to obtain
7 Y
1o — 29 < 3y A (A34)
Since A1(0%) = a by Theorem 3.3(iii), (A.34) can be rewritten
ae + (1 — e)A}(0) = 2i(eh)) (A.35)

f0<e<l.
Now let 0 < y; <y, and consider A}*(ef}'). Theorem 3.3(i) implies
that 622 £ 62 in Q, so that

Ap(ed) = Ar(el). (A.36)

If e€(0, 1), the left hand inequality in (3.7) follows now from (A.35) and
(A.36). If e > 1, the left hand inequality in (3.8) follows from (A.29) and
(A.36).

(i) Note that A}(ef}?) < A)'(ef)") by the same reasoning as for
(A.36). Since (A.29) implies 1}(ef}?) < a if e < 1, (3.9) follows.

To obtain (3.10), consider (A.33) once more. Assume e > 1, and
integrate between 1 and e to obtain

A
e

A0 =

”S)) — 13(0). (A.37)

Using the fact that A}(0}) = a, we may rewrite (A.37) as
1(e0}) < ae + (1 — €)43(0). (A.38)

Since A}(ef}?) < A1(eB2"), (3.10) is now immediate.
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